Production of Polymer Grade Ethylene via the Oxidative Dehydrogenation of Ethane
Abstract
This report provides an overview of the oxidative dehydrogenation (ODH) process and detailed design for the production of 800 thousand tonnes/annum of ethylene through oxidative dehydrogenation using a feed source consisting of ethane and oxygen. Included in this report are the descriptions of main process units, material and energy balances, an economic analysis of the process, detailed engineering design, specification sheets, P&IDs of relevant equipment, plot plan of the facility, and a review of safety and environmental concerns. A wall-cooled multi-tube packed-bed-reactor with a Ni-Nb-O catalyst operating at 400 C and 3000 kPa is selected to carry out the ODH reaction. The reactor effluent, composed of ethane, ethylene, water, and carbon dioxide is separated through compression, cooling and multiple two-phase separators, an amine sweetening system, a two-column temperature swing adsorption unit, and a distillation column; an ethane/propane refrigeration system provides the necessary cooling for the distillation unit. A final ethylene product that has a purity of 99.9% is stored and sold into a product pipeline. A Process Flow Diagram is included to show the equipment and major units in the process, and a Stream Table is provided to act as the material and energy balance for the process. The process flow diagram and P&IDs are in Appendices B and E, respectively. An economic analysis performed for the process shows a total Fixed Capital Cost of $361M, payback period of 6.3 years, and a Net Present Value of $218.48M after 20 years of operation. The most expensive units in the process were found to be the compressors ($55M), the steam turbine ($29M), and the ODH reactor (24M). Due to the handling of flammable materials throughout the process, the greatest hazard identified is that of an explosive atmosphere that would be formed after a loss of containment. Besides combustion products from utilities and flaring, there are no major environmental concerns associated with the operation of the process, the yearly GHG emissions for the process are 161.43 ktCO2eq. An included Gantt Chart outlines the design steps taken in the completion of this project.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
The JIIET is an open-access journal meaning that upon publication of research, it will publicly available on the web and can be accessed via search engines. In contrast with traditional journals which charge readers a fee via subscription or single purchase, open-access journals charge authors a fee to pay ongoing costs for lifetime storage of articles.
Authors keep the copyright of published articles in JIEET. The journal provides a platform for authors to publish their works, receive credentials, and keep their name associated with the idea. We recommend authors to apply for an official copyright certificate via the copyright offices in their country.
We at JIIET do not tolerate any research misconduct including plagiarism, playing with data such as trimming, cooking, and forging. We only publish original research works. In other words, your research should not be published in any other journals, books, and conference proceedings. However, presented works at conferences and workshops are acceptable for publications.
JIIET does not accept any responsibility about the consequences of releasing your idea on the web. The only method of protection, which is suitable for publication, is the copyright. This needs authors to apply for copyright through copyright offices. If you like to keep your idea secret for patenting, we do not recommend to publish your idea.